Regulated formation and selection of neuronal processes underlie directional guidance of neuronal migration.

نویسندگان

  • Michael E Ward
  • Hui Jiang
  • Yi Rao
چکیده

Axon guidance and neuronal migration are critical features of neural development, and it is believed that extracellular gradients of secreted guidance cues play important roles in pathfinding. It has been well documented that the growth cones of extending axons respond to such extracellular gradients by growing toward or away from the source of the secreted cue via asymmetrical extension of a single growth cone. However, it is unclear whether migrating neurons change direction in response to guidance molecules using the same mode of turning as extending axons. In this study, we demonstrate that migrating neurons turn away from the chemo-repellent Slit through repeated rounds of process extension and retraction and do not turn through the reorientation of a single growth cone. We further show that Slit increases the rate of somal process formation and that these processes form preferentially on the side of the cell body furthest away from the Slit source. In addition, Slit causes cell turning through asymmetric process selection. Finally, we show that multiple types of migrating neurons employ this mode of cell turning in response to a variety of guidance cues. These results show that migrating neurons employ a unique type of turning when faced with secreted guidance cues that is distinct from the type employed by axons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biased selection of leading process branches mediates chemotaxis during tangential neuronal migration.

Current models of chemotaxis during neuronal migration and axon guidance propose that directional sensing relies on growth cone dynamics. According to this view, migrating neurons and growing axons are guided to their correct targets by steering the growth cone in response to attractive and repulsive cues. Here, we have performed a detailed analysis of the dynamic behavior of individual neurons...

متن کامل

Functional role of a glycolipid in directional movements of neurons.

Migration of neurons from their site of origin to their final destination is a critical and universal step in the formation of the complex structure of the nervous system. The migratory process is thought to be governed in part by genetically and epigenetically defined sequences of signals which are interpreted by migrating cells. The molecular mechanisms that underlie neuronal migration have b...

متن کامل

Neuronal migration and molecular conservation with leukocyte chemotaxis.

Cell migration is essential in species ranging from bacteria to humans (for recent reviews, see Lauffenburger and Horwitz 1996; Mitchison and Cramer 1996; Montell 1999). In the amoebae Dictyostelium discoideum, cell migration is involved in chemotaxis toward food sources and in aggregation (for review, see Devreotes and Zigmond 1988; Parent and Devreotes 1999; Chung et al. 2001). In higher vert...

متن کامل

Distinguishing between directional guidance and motility regulation in neuronal migration.

Although neuronal migration is an essential process in development, how neural precursors reach their final destination in the nervous system is not well understood. Secreted molecules that are known to be involved in axon guidance are likely to play important roles in regulating neuronal migration, but an important issue that remains unclear is whether such molecules act as directional guidanc...

متن کامل

P75: Expression of GDNF Genes in the Cerebellum of Rat Neonate Born to Mother with Diabetes

Diabetes Mellitus as a common metabolic disorder in women of reproductive age is rising throughout the globe. Diabetes in pregnancy has various adverse outcomes on different organs development including the central nervous system (CNS) and it can cause learning deficits, behavioral problems and motor dysfunctions in the offspring. The cerebellum is a part of brain that coordinates voluntary mov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular neurosciences

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2005